Phytochemical Profiling, Antioxidant, and Antidiabetic Activities of Defatted Ethanol Aerial Extract of Heliotropium indicum: Insights from GC-MS and In Vitro Studies

Main Article Content

Adewusi J Adepoju
Adams A Adepoju
Ibidotun T Olawoore
Ezekiel T Ayodele

Abstract

Heliotropium indicum, a plant traditionally used in folk medicine, has been underexplored for its combined antioxidant and antidiabetic potential. This study investigates the phytochemical composition, antioxidant, and antidiabetic activities of the ethanol extract of Heliotropium indicum, marking the first comprehensive evaluation of these combined properties using advanced analytical techniques. Phytochemical screening, Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and in vitro assays were employed to identify bioactive compounds and assess therapeutic potential. All tested phytochemicals were detected except anthocyanins, with quantitative analysis revealing significant levels of saponins (5.58 ± 0.18%), alkaloids (9.40 ± 0.29%), flavonoids (23.92 ± 0.16 mg QE/g), phenols (74.06 ± 0.48 mg GAE/g), and tannins (15.85 ± 0.20 mg GAE/g). FTIR analysis identified key functional groups (O-H, C=O, C-H), indicating the presence of diverse bioactive compounds. GC-MS analysis revealed 27 phytocompounds, with key compounds such as phytol and n-hexadecanoic acid exhibiting antioxidant and antidiabetic properties. The extract demonstrated strong antioxidant activity, with DPPH and FRAP IC50 values of 19.86 µg/mL and 38.70 µg/mL, respectively, compared to ascorbic acid (13.07 µg/mL), indicating efficacy comparable to standard antioxidants. Antidiabetic assays showed a dose-dependent response with an IC50 of 13.83 µg/mL, close to that of acarbose (10.59 µg/mL), suggesting near-equivalent antidiabetic potency. These findings highlight the multifunctional therapeutic potential of Heliotropium indicum, validating its traditional use and supporting further in vivo studies and drug formulation research for potential clinical applications.

Metrics

Metrics Loading ...

Article Details

How to Cite
Adepoju, A. J., Adepoju, A. A., Olawoore, I. T., & Ayodele, E. T. (2025). Phytochemical Profiling, Antioxidant, and Antidiabetic Activities of Defatted Ethanol Aerial Extract of Heliotropium indicum: Insights from GC-MS and In Vitro Studies. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 4(8), 320 – 328. https://doi.org/10.26538/tjpps/v4i8.1
Section
Articles

References

Miranda JJM. Medicinal plants and their traditional uses in different locations. In: Elsevier eBooks; 2021. p. 207–23. https://doi.org/10.1016/b978-0-12-824109-7.00014-5

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas A, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25(22): 5243. https://doi.org/10.3390/molecules25225243

Chaachouay N, Zidane L. Plant-Derived Natural Products: a source for drug discovery and development. Drugs Drug Candidates. 2024; 3(1): 184–207. https://doi.org/10.3390/ddc3010011

Najmi A, Javed SA, Bratty MA, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022; 27(2): 349. https://doi.org/10.3390/molecules27020349

Sarkar C, Mondal M, Khanom B, Hossain MM, Hossain MS, Sureda A, Islam MT, Martorell M, Kumar M, Sharifi-Rad J, Al-Harrasi A, Al-Rawahi A. Heliotropium indicum L.: From farm to a source of bioactive compounds with therapeutic activity. Evid Based Complement Alternat Med. 2021; 2021: 1–21. https://doi.org/10.1155/2021/9965481

Pedrosa KM, De Lucena CM, De Queiroz RT, Nunes EN, Souza RS, Da Cruz DD, De Lucena RFP. Heliotropium indicum (L.) Boraginaceae. In: Ethnobotany of mountain regions. 2023. p. 429–34. https://doi.org/10.1007/978-3-030-87251-9_52

Chunthorng-Orn J, Dechayont B, Phuaklee P, Prajuabjinda O, Juckmeta T, Itharat A. Cytotoxic, Anti-inflammatory and Antioxidant Activities of Heliotropium indicum Extracts. J Med Assoc Thai. 2016; 99(Suppl 4): S102–9. https://pubmed.ncbi.nlm.nih.gov/29919994

Faezizadeh Z, Gharib A, Godarzee M. Effects of some Boraginaceae species extracts on albumin, hemoglobin and crystalline glycation reaction. Indian J Pharm Sci. 2016; 78(4): 513–9. https://doi.org/10.4172/pharmaceutical-sciences.1000143

Agarwal S. Diabetes Mellitus: Understanding the disease, its diagnosis, and management strategies in present scenario. Afr J Biomed Res. 2024; 27(3): 320–31. https://doi.org/10.53555/ajbr.v27i3.1457

Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern drug discovery. Biology. 2020; 9(9): 252. https://doi.org/10.3390/biology9090252

Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023; 19: e01585. https://doi.org/10.1016/j.sciaf.2023.e01585

Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017; 6(4): 42. https://doi.org/10.3390/plants6040042

Al-Rubaye AF, Hameed IH, Kadhim MJ. A review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Int J Toxicol Pharmacol Res. 2017; 9(1): 81–7. https://doi.org/10.25258/ijtpr.v9i01.9042

Ononamadu CJ, Alhassan AJ, Imam AA, Ibrahim A, Ihegboro GO, Owolarafe AT, Sule MS. In vitro and in vivo anti-diabetic and antioxidant activities of methanolic leaf extracts of Ocimum canum. Caspian J Intern Med. 2019; 10(2): 162–75. https://doi.org/10.22088/cjim.10.2.162

Adepoju AJ, Esan AO, Olawoore IT, Ibikunle GJ, Adepoju VO. Nauclea latifolia Stem Bark Extracts: Potentially Effective Source of Antibacterial, Antioxidant, Antidiabetic and Anti-Inflammatory Compounds. J Appl Sci Environ Manage. 2024; 28(1): 49–59. https://doi.org/10.4314/jasem.v28i1.6

Van Tan P. The Determination of Total Alkaloid, Polyphenol, Flavonoid and Saponin Contents of Pogang gan (Curcuma sp.). Int J Biol. 2018; 10(4): 42–8. https://doi.org/10.5539/ijb.v10n4p42

Obadoni BO, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta states of Nigeria. Glob J Pure Appl Sci. 2002; 8(2): 203–8. https://doi.org/10.4314/gjpas.v8i2.16033

Siddiqui N, Rauf A, Latif A, Mahmood Z. Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J Taibah Univ Med Sci. 2017; 12(4): 360–3.

https://doi.org/10.1016/j.jtumed.2016.11.006

Rao UM. Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malays J Anal Sci. 2016; 20(5): 1181–90. https://doi.org/10.17576/mjas-2016-2005-25

Shraim AM, Ahmed TA, Rahman MM, Hijji YM. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT. 2021; 150: 111932. https://doi.org/10.1016/j.lwt.2021.111932

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang C. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022; 27(4): 1326. https://doi.org/10.3390/molecules27041326

Oluwagunwa OA, Alashi AM, Aluko RE. Inhibition of the in vitro Activities of α-Amylase and Pancreatic Lipase by Aqueous Extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis Leaves. Front Nutr. 2021; 8: 772903. https://doi.org/10.3389/fnut.2021.772903

Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019; 24: e00370. https://doi.org/10.1016/j.btre.2019.e00370

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines. 2018; 5(3): 93. https://doi.org/10.3390/medicines5030093

Tong Z, He W, Fan X, Guo A. Biological Function of Plant Tannin and Its Application in Animal Health. Front Vet Sci. 2022; 8: 803657. https://doi.org/10.3389/fvets.2021.803657

Aryal B, Raut BK, Bhattarai S, Bhandari S, Tandan P, Gyawali K, Sharma K, Ranabhat D, Thapa R, Aryal D, Ojha A, Devkota HP, Parajuli N. Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. Evid Based Complement Alternat Med. 2022: 7299778. https://doi.org/10.1155/2022/7299778

Bildziukevich U, Wimmerová M, Wimmer Z. Saponins of selected triterpenoids as potential therapeutic agents: a review. Pharmaceuticals. 2023; 16(3): 386. https://doi.org/10.3390/ph16030386

Clarke G, Ting K, Wiart C, Fry J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging, Ferric Reducing Activity Potential and Total Phenolics Content Indicates Redundancy in Use of All Three Assays to Screen for Antioxidant Activity of Extracts of Plants from the Malaysian Rainforest. Antioxidants. 2013; 2(1): 1–10. https://doi.org/10.3390/antiox2010001

Gülçin İ. Fe3+–Fe2+ transformation method: an important antioxidant assay. Methods Mol Biol. 2014; 1208: 233–46. https://doi.org/10.1007/978-1-4939-1441-8_17

Ladeska V, Elya B, Hanafi M, KK K. Antioxidants, Total Phenolic and Flavonoid Content and Toxicity Assay of Ampelas (Tetracera macrophylla Wall.Ex Hook.F.& Thoms) From Kalimantan-Indonesia. Pharmacogn J. 2022; 14(5): 642–8. https://doi.org/10.5530/pj.2022.14.147

Utami YP, Yulianty R, Djabir YY, Alam G. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Etlingera elatior (Jack) R.M. Smith from North Luwu, Indonesia. Trop J Nat Prod Res. 2024; 8(1): 5937–43. https://doi.org/10.26538/tjnpr/v8i1.34

Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem. 2010; 3(1): 43–53. https://doi.org/10.1016/j.arabjc.2009.12.008

Silva RO, Sousa FBM, Damasceno SR, Carvalho NS, Silva VG, Oliveira FRM, Sousa DP, Aragão KS, Barbosa AL, Freitas RM, Medeiros JVR. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol. 2014; 28(4): 455–64. https://doi.org/10.1111/fcp.12049

Dong M, Oda Y, Hirota M. (10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatrienoic Acid Methyl Ester as an Anti-inflammatory Compound from Ehretia dicksonii. Biosci Biotechnol Biochem. 2000; 64(4): 882–6. https://doi.org/10.1271/bbb.64.882

Ganesan T, Subban M, Leslee DBC, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2024; 14(13): 14547–58. https://doi.org/10.1007/s13399-022-03576-w

Bao X, Zhang S, Zhang X, Jiang Y, Liu Z, Hu X, Yi J. Effects of pasteurization technologies and storage conditions on the flavor changes in acidified chili pepper. Curr Res Food Sci. 2022; 5: 1295–304. https://doi.org/10.1016/j.crfs.2022.08.007

Oyedemi SO, Oyedemi BO, Ijeh II, Ohanyerem PE, Coopoosamy RM, Aiyegoro OA. Alpha-Amylase Inhibition and Antioxidative Capacity of Some Antidiabetic Plants Used by the Traditional Healers in Southeastern Nigeria. Sci World J. 2017; 2017: 3592491. https://doi.org/10.1155/2017/3592491

Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their Anti-Diabetic Effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019; 9(9): 430. https://doi.org/10.3390/biom9090430

Gonçalves S, Romano A. Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. In: Phenolic Compounds - Biological Activity. InTech; 2017. https://doi.org/10.5772/66844

Del Hierro JN, Herrera T, Fornari T, Reglero G, Martin D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J Funct Foods. 2018; 40: 484–97. https://doi.org/10.1016/j.jff.2017.11.032

Emken E, Abraham S, Lin C. Metabolism of cis-12-octadecadienic acid and trans-9,trans-12-octadecadienoic acid and their influence on lipogenic enzyme activities in mouse liver. Biochim Biophys Acta. 1987; 919(2): 111–21. https://doi.org/10.1016/0005-2760(87)90197-4

Hutton JC, Sener A, Malaisse WJ. The metabolism of 4-methyl-2-oxopentanoate in rat pancreatic islets. Biochem J. 1979; 184(2): 291–301. https://doi.org/10.1042/bj1840291

Pu J, Peng G, Li L, Na H, Liu Y, Liu P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J Lipid Res. 2011; 52(7): 1319–27. https://doi.org/10.1194/jlr.m011254

Wang J, Hu X, Ai W, Zhang F, Yang K, Wang L, Zhu X, Gao P, Shu G, Jiang Q, Wang S. Phytol increases adipocyte number and glucose tolerance through activation of PI3K/Akt signaling pathway in mice fed high-fat and high-fructose diet. Biochem Biophys Res Commun. 2017; 489(4): 432–8. https://doi.org/10.1016/j.bbrc.2017.05.160

Ceja-Galicia ZA, Cespedes-Acuña CLA, El-Hafidi M. Protection strategies against palmitic acid-induced lipotoxicity in metabolic syndrome and related diseases. Int J Mol Sci. 2025; 26(2): 788. https://doi.org/10.3390/ijms26020788

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of N-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des. 2012; 80(3): 434–9. https://doi.org/10.1111/j.1747-0285.2012.01418.x

Bobe G, Zhang Z, Kopp R, Garzotto M, Shannon J, Takata Y. Phytol and its metabolites phytanic and pristanic acids for risk of cancer: Current evidence and future directions. Eur J Cancer Prev. 2020; 29(2): 191–200. https://doi.org/10.1097/cej.0000000000000534

Ahmed W, Azmat R, Mehmood A, Qayyum A, Ahmed R, Khan SU, Liaquat M, Naz S, Ahmad S. The analysis of new higher operative bioactive compounds and chemical functional group from herbal plants through UF-HPLC-DAD and Fourier transform infrared spectroscopy methods and their biological activity with antioxidant potential process as future green chemical assay. Arab J Chem. 2021; 14(2): 102935. https://doi.org/10.1016/j.arabjc.2020.102935

Oliveira RN, Mancini MC, De Oliveira FCS, Passos TM, Quilty B, Da Silva Moreira Thiré RM, McGuinness GB. FTIR analysis and quantification of phenols and flavonoids of five commercially available plant extracts used in wound healing. Matéria (Rio J). 2016; 21(3): 767–79. https://doi.org/10.1590/s1517-707620160003.0072

Semenescu A, Moacă E, Chioibaş R, Iftode A, Tchiakpe-Antal D, Vlase L, Vlase A, Muntean D, Dehelean C. Galium verum L. petroleum ether extract – antitumor potential on human melanoma cells. Analele Univ Ovidius Constanţa Ser Chimie. 2023; 34(2): 140–9. https://doi.org/10.2478/auoc-2023-0018

Kozhantayeva A, Tursynova N, Kolpek A, Aibuldinov Y, Tursynova A, Mashan T, Mukazhanova Z, Ibrayeva M, Zeinuldina A, Nurlybayeva A, Iskakova Z, Tashenov Y. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals. 2024; 17(8): 996. https://doi.org/10.3390/ph17080996

Sharma R, Kishore N, Hussein A, Lall N. The potential of Leucosidea sericea against Propionibacterium acnes. Phytochem Lett. 2014; 7: 124–9. https://doi.org/10.1016/j.phytol.2013.11.005

Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J Pharm Sci. 2021; 7: 63. https://doi.org/10.1186/s43094-021-00208-4

Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med. 2015; 15: 11. https://doi.org/10.1186/s12906-015-0528-4

Adeoye-Isijola MO, Olajuyigbe OO, Jonathan SG, Coopoosamy RM. Bioactive compounds in ethanol extract of Lentinus squarrosulus mont - a Nigerian medicinal macrofungus. Afr J Tradit Complement Altern Med. 2018; 15(2): 42–50. https://doi.org/10.21010/ajtcamv15i2.6

Daba G, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, Wen TC. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodivers J Biol Divers. 2020; 21(6): 2437–45. https://doi.org/10.13057/biodiv/d210615

Murakami Y, Iwabuchi H, Ohba Y, Fukami H. Analysis of Volatile Compounds from Chili Peppers and Characterization of Habanero (Capsicum chinense) Volatiles. J Oleo Sci. 2019; 68(12): 1251–60. https://doi.org/10.5650/jos.ess19155

Wickramaratne MN, Punchihewa JC, Wickramaratne DBM. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med. 2016; 16: 466. https://doi.org/10.1186/s12906-016-1452-y

Torres S, Baigorí MD, Swathy S, Pandey A, Castro GR. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res Int. 2009; 42(4):454–60. https://doi.org/10.1016/j.foodres.2008.12.005