HPLC Analysis, In Vitro and In Silico Evaluation of Antioxidant Activity of Methanol Stem Bark Extract of Picralima nitida (Apocynaceae)
Main Article Content
Abstract
Antioxidant compounds are effective in mitigating or preventing radical-induced damages either by neutralizing the free radicals or activating pro-antioxidant proteins (such as NRF2). Picralima nitida has been shown to possess numerous biological activities. This study aimed to investigate the phytochemical constituents, antioxidant activity, and predict the safety and efficacy of compounds in Picralima nitida stem bark. Quantitative evaluation of phenols and flavonoids contents were performed using spectrophotometric methods. The antioxidant activity was evaluated in vitro using ABTS, DPPH, and FRAP assays. Analytical High-performance Liquid Chromatography (HPLC) was used for the compounds identification. Furthermore, the antioxidant potential of the identified compounds were assessed in silico via molecular docking with nuclear factor erythroid 2-related factor 2 (NRF2), followed by pharmacokinetics, and toxicity assessment using computational tools. The results showed that the total phenol, and flavonoid contents of Picralima nitida stem bark extract were 95.11 mgGAE/g extract, and 12.22 mgQE/g extract, respectively. In vitro antioxidant activity evaluation showed that the extract possesses strong antioxidant activity with IC50 values of 7.38 µg/mL, and 27.40 µg/mL for ABTS, and DPPH radical scavenging activity, respectively, and a FRAP value of 145.37 mM FeSO₄ equivalents/g. HPLC analysis identified 11 compounds with docking scores between -4.315 and -12.603 Kcal/mol. Comparison of the pharmacokinetic properties of these compounds revealed rutin, naringin, and catechin as the most promising candidates for further studies. This study underscores the use of Picralima nitida in the treatment of different ailments in traditional medicine while providing insights for future drug developments from the plant.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural Products in Drug Discovery: Advances and Opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. doi:10.1038/S41573-020-00114-Z
Oribayo OO, Owolabi MA, Ukpo GE, Shode FO. Antioxidant Activity of Some Nigerian Medicinal Plants Used in Malaria Treatment. Trop J Nat Prod Res. 2018; 2(1):18-22. doi:10.26538/TJNPR/V2I1.4
Erharuyi O, Falodun A, Langer P. Medicinal Uses, Phytochemistry and Pharmacology of Picralima nitida (Apocynaceae) in Tropical Diseases: A Review. Asian Pac J Trop Med. 2014; 7(1):1-8. doi:10.1016/S1995-7645(13)60182-0
Adesanya OF, Adeyemo GO, Mafimidiwo AN, Olorunleke RF, Olugbemi MO. Growth Performance and Serum Biochemical Indices of Broiler Chicken as Influenced by Dietary Inclusion of Picralima nitida Seed Meal. Nig J Anim Prod. Published online September 10, 2024:1159-1162. doi:10.51791/NJAP.VI.6736
Itiola O, Odelola H. Evaluation of the Antimicrobial Property of the Stem Bark of Picralima nitida (Apocynaceae). Phytother Res. 2000; 14(5):368-370.
The Global Epidemic | NCD Alliance. Accessed February 5, 2025. https://ncdalliance.org/the-global-epidemic
Halliwell B. Free Radicals and Antioxidants - Quo Vadis? Trends Pharmacol Sci. 2011; 32(3):125-130.
doi:10.1016/J.TIPS.2010.12.002/ASSET/716C3ECD-CDD8-450F-83D0-4BE97F30C78E/MAIN.ASSETS/GR2.SML
Balaban RS, Nemoto S, Finkel T. Mitochondria, Oxidants, and Aging. Cell. 2005; 120(4):483-495. doi:10.1016/J.CELL.2005.02.001
Ma Q. Transcriptional Responses to Oxidative Stress: Pathological and Toxicological Implications. Pharmacol Ther. 2010; 125(3):376-393. doi:10.1016/J.PHARMTHERA.2009.11.004
Finkel T. Signal Transduction by Reactive Oxygen Species. J Cell Biol. 2011; 194(1):7-15. doi:10.1083/JCB.201102095
Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015; 30(1):11-26. doi:10.1007/S12291-014-0446-0
Erejuwa OO, Sulaiman SA, Ab Wahab MS. Honey: A Novel Antioxidant. Molecules. 2012; 17(4):4400-4423. doi:10.3390/MOLECULES17044400
Das J, Ghosh J, Roy A, Sil PC. Mangiferin Exerts Hepatoprotective Activity Against D-Galactosamine Induced Acute Toxicity and Oxidative/Nitrosative Stress Via Nrf2-NFκB Pathways. Toxicol Appl Pharmacol. 2012; 260(1):35-47. doi:10.1016/J.TAAP.2012.01.015
Raghunath A, Nagarajan R, Sundarraj K, Palanisamy K, Perumal E. Identification of Compounds That Inhibit the Binding of Keap1a/Keap1b Kelch DGR Domain With Nrf2 ETGE/DLG Motifs in Zebrafish. Basic Clin Pharmacol Toxicol. 2019; 125(3):259-270. doi:10.1111/BCPT.13222
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013; 53:401. doi:10.1146/ANNUREV-PHARMTOX-011112-140320
Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochim Biophys Acta Mol Cell Res. 2018; 1865(5):721-733. doi:10.1016/J.BBAMCR.2018.02.010
Kansanen E, Kuosmanen SM, Leinonen H, Levonenn AL. The Keap1-Nrf2 Pathway: Mechanisms of Activation and Dysregulation in Cancer. Redox Biol. 2013; 1(1):45-49. doi:10.1016/J.REDOX.2012.10.001
Mili A, Birangal S, Nandakumar K, Lobo R. A Computational Study to Identify Sesamol Derivatives as NRF2 Activator for Protection Against Drug-Induced Liver Injury (DILI). Mol Divers. 2024; 28(3):1709-1731. doi:10.1007/S11030-023-10686-8
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The Therapeutic Effect of Resveratrol: Focusing on the Nrf2 Signaling Pathway. Biomed Pharmacother. 2020; 127:110234. doi:10.1016/J.BIOPHA.2020.110234
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci. 2018; 19(6). doi:10.3390/IJMS19061578
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Compr Pharmacol. 2022; 2:408-422. doi:10.1016/B978-0-12-820472-6.00041-4
Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J Agric Food Chem. 2003; 51(22):6509-6515. doi:10.1021/JF0343074
Kaisoon O, Siriamornpun S, Weerapreeyakul N, Meeso N. Phenolic Compounds and Antioxidant Activities of Edible Flowers from Thailand. J Funct Foods. 2011; 3(2):88-99. doi:10.1016/J.JFF.2011.03.002
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med. 1999; 26(9-10):1231-1237. doi:10.1016/S0891-5849(98)00315-3
Jain A, Soni M, Deb L, Jain A, Rout S, Gupta V, Krishna K. Antioxidant and Hepatoprotective Activity of Ethanolic and Aqueous Extracts of Momordica dioica Roxb. Leaves. J Ethnopharmacol. 2008; 115(1):61-66. doi:10.1016/J.JEP.2007.09.009
Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. 1996; 239(1):70-76. doi:10.1006/ABIO.1996.0292
Bodun DS, Omoboyowa DA, Omotuyi OI, Olugbogi EA, Balogun TA, Ezeh CJ, Omirin ES. QSAR-Based Virtual Screening of Traditional Chinese Medicine for the Identification of Mitotic Kinesin Eg5 Inhibitors. Comput Biol Chem. 2023; 104:107865. doi:10.1016/J.COMPBIOLCHEM.2023.107865
Omoboyowa DA. Virtual Screening of Phyto-Compounds from Blighia sapida as Protein Tyrosine Phosphatase 1B Inhibitor: A Computational Approach Against Diabetes. Chem Afr. 2022; 5(4):871-881. doi:10.1007/S42250-022-00373-W
Mamta S, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of Medicinal Plants. J Pharmacogn Phytochem. 2013; 1(6):168-182. Accessed February 10, 2025. https://www.phytojournal.com/archives/2013.v1.i6.83/phytochemistry-of-medicinal-plants
Saravanan S, Parimelazhagan T. In Vitro Antioxidant, Antimicrobial and Anti-Diabetic Properties of Polyphenols of Passiflora ligularis Juss. Fruit Pulp. Food Sci Hum Wellness. 2014; 3(2):56-64. doi:10.1016/J.FSHW.2014.05.001
Teugwa CM, Mejiato PC, Zofou D, Tchinda BT, Boyom FF. Antioxidant and Antidiabetic Profiles of Two African Medicinal Plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC Complement Altern Med. 2013; 13. doi:10.1186/1472-6882-13-175
Ilenowa JO, Ogedengbe OO, Oboh HA. Phytochemical, Proximate Composition, Mineral, Antioxidant, and Radical Scavenging Capacity of Picralima nitida Fruit Pulp Aqueous Extract. Nig J Basic Appl Sci. 2024; 32(1):37-42. doi:10.4314/NJBAS.V32I1.6
Erharuyi O, Falodun A. Free Radical Scavenging Activities of Methanol Extract and Fractions of Picralima nitida (Apocenaceae). J Appl Sci Environ Manage. 2012; 16:291-294.
Olumese FE, Aihie PA, Oriakhi K. Nutritional Composition, Phytochemical Analysis and Antioxidant Capacity of Ethanol Extract of Picralima nitida Fruit (Bark and Pulp). J Appl Sci Environ Manage. 2023; 27(5):1039-1046. doi:10.4314/JASEM.V27I5.24
Feyisayo AK, Victor AC. Assessment of Antioxidant and Antidiabetic Properties of Picralima nitida Seed Extracts. J Med Plants Res. 2019; 13(1):9-17. doi:10.5897/JMPR2018.6680
Libya F. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. Published online January 1, 1996. Accessed February 5, 2025.
Velázquez-Libera JL, Durán-Verdugo F, Valdés-Jiménez A, Valdés-Jiménez A, Núñez-Vivanco G, Caballero J. LigRMSD: A Web Server for Automatic Structure Matching and RMSD Calculations Among Identical and Similar Compounds in Protein-Ligand Docking. Bioinformatics. 2020; 36(9):2912-2914. doi:10.1093/BIOINFORMATICS/BTAA018
Li B, Wang Z, Liu Z, Tao Y, Sha C, He M, Li X. DrugMetric: Quantitative Drug-Likeness Scoring Based on Chemical Space Distance. Brief Bioinform. 2024; 25(4):321. doi:10.1093/BIB/BBAE321
Ertl P, Schuffenhauer A. Estimation of Synthetic Accessibility Score of Drug-Like Molecules Based on Molecular Complexity and Fragment Contributions. J Cheminform. 2009; 1(1):1-11. doi:10.1186/1758-2946-1-8/TABLES/1
Ganesan A. The Impact of Natural Products Upon Modern Drug Discovery. Curr Opin Chem Biol. 2008; 12(3):306-317. doi:10.1016/J.CBPA.2008.03.016
Jorgensen WL, Duffy EM. Prediction of Drug Solubility from Structure. Adv Drug Deliv Rev. 2002; 54(3):355-366. doi:10.1016/S0169-409X(02)00008-X