Antioxidant Properties of Ethanol Crude Extract, Partitioned and Chromatographic Fractions of <i>Acacia ataxacantha</i> DC (Fabaceae) stem bark

Authors

  • Haruna Baba Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria.
  • Florence Tarfa Department of Medicinal Chemistry and Quality Control, National Institute for Pharmaceutical Research and Development, Idu, Abuja.
  • Bilqis A. Lawal Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria.
  • Grace A. Akpanika Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria.
  • Augustine A. Ahmadu Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria.

DOI:

https://doi.org/10.26538/tjpps/v3i6.4

Keywords:

Column chromatography, Ferric reducing antioxidant power (FRAP), 2, 2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2, 2- diphenyl-1-picrylhydrazyl (DPPH), antioxidant, Acacia ataxacantha

Abstract

Acacia ataxacantha is used in the management of several diseases in many parts of Nigeria. The study was carried out to evaluate the antioxidant potential of ethanol crude extract, partitioned and chromatographic fractions of the stem bark of Acacia ataxacantha. The dried powdered stem bark was extracted with 70% ethanol and the extract was partitioned with ethyl acetate (EA) and 1-butanol (BT) in succession. The EA fraction was subjected to flash column chromatography while the BT fraction was further fractionated by gel filtration using sephadex LH20. The eluates from the EA fraction eluted with dichloromethane /ethyl acetate (95:5) produced a single spot in iodine tank and were pooled together to give a white solid (EAF). The eluates from the BT fraction which produced one spot in iodine tank were pulled together and coded BTF. The crude extract, EA, BT, EAF and BTF were screened for antioxidant properties using 2, 2- diphenyl-1-picrylhydrazyl (DPPH), 2, 2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay procedures with ascorbic acid (AA) used as the standard. The crude extract produced the greatest inhibition in the ABTS assay with IC50 of 0.46±0.03 while the EAF produced the least activity in the FRAP assay with IC50 of 37.45±0.06. The crude extract and BF produced the best antioxidant properties in all the assay methods employed hence, the plant has the potential to be developed into an antioxidant compounds.

         Views | PDF Download | EPUB Download:61 / 27 / 32

Author Biography

Augustine A. Ahmadu, Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria.

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Veritas University, Abuja, Nigeria.

References

Warner, D; Sheng, H and Batini-Haberle, I. Oxidants, antioxidants, and the ischemic Brain J. Exp. Biol., 2004, 207 (18): 3221-3231.

Hurrell, R. Influence of vegetable protein sources on trace element and mineral bioavailability J. Nutr. 2003, 133 (9): 2973S–2977S.

Baba H, Vwioko O and Timikare J. Free radical scavenging activity of two edible vegetables from the Niger delta region of Nigeria. GSC Biol. and Pharm. Sciences 2018; 5(2), 69-73.

Ross JH. An analysis of the African Acacia species: their distribution, possible origins and relationships. Bothalia. 1981; 10;13(3/4):389-413.

Maroyi A. Review of Ethnopharmacology and phytochemistry of Acacia ataxacantha. Trop. J. Pharm. Res. 2018; 17(11):2301-8.

Hedimbi M, Chinsembu KC. Ethnomedicinal study of plants used to manage HIV/AIDS-related disease conditions in the Ohangwena region, Namibia. Int J Med Pl Res. 2012; 1(1): 4-11.

Madubuike SA, Mailafia S, Ode OJ, Okpo N. Phytochemical screening and antibacterial susceptibility of Escherichia coli O157: H7 isolates on Acacia ataxacantha leaves. J. Microbiol. Antimicrob.. 2018 30; 10(1):1-8.

Arise RO, Ganiyu AI, Oguntibeju OO. Lipid profile, antidiabetic and antioxidant activity of Acacia ataxacantha bark extract in streptozotocin-induced diabetic rats. In: OO Oguntibeju (Ed.), Antioxidantantidiabetic agents and human health, InTech; 2014. Available on: https://www.intechopen.com/books/antioxidantantidiabetic-agents-and-human-health/lipid-profileantidiabetic-and-antioxidant-activity-of-acaciaataxacantha-bark-extract-in-streptozot, retrieved on 23 November 2017.

Amoussa AMO, Lagnika L, Sanni A. Acacia ataxacantha (bark): chemical composition and antibacterial activity of the extracts. Int J Pharm Pharm Sci 2014; 6(11): 138-141.

Amoussa AMO, Sanni A, Lagnika L. Antioxidant activity and total phenolic, flavonoid and flavonol contents of the bark extracts of Acacia ataxacantha. J Pharmacog Phytochem 2015; 4(2): 172-178.

Aba OY, Ezuruike IT, Ayo RG, Habila JD, Ndukwe GI. Isolation, antibacterial and antifungal evaluation of αamyrenol from the root extract of Acacia ataxacantha DC. Sch Acad J Pharm 2015; 4(2): 124-131.

Abbas MY, Ejiofor JI, Yaro AH, Yakubu MI, Anuka JA. Anti-inflammatory and antipyretic activities of the methanol leaf extract of Acacia ataxacantha (Leguminosae) in mice and rats. Bayero J Pure Appl Sci 2017; 10(1): 1-5.

Arise RO, Akapa T, Adigun MA, Yekeen AA, Oguntibeju OO. Normoglycaemic, normolipidaemic and antioxidant effects of ethanolic extract of Acacia ataxacantha root in streptozotocin - induced diabetic rats. Not Sci Biol 2016; 8(2):144-150.

Amoussa AMO, Bourjot M, Lagnika L, VonthronSénécheau C, Sanni A. Acthaside: a new chromone derivative from Acacia ataxacantha and its biological activities. BMC Complem Altern Med 2016; 16: 506

Ahmadu AA, Agunu A, Myrianthopoulos V, Fokialakis N. Chemical constituents of the stem bark of Acacia ataxacantha (Fabaceae). Trop.J. Nat. Prod. Res. 2018; 2(8):380-2.

Amoussa AM, Lagnika L, Bourjot M, Vonthron-Senecheau C, Sanni A. Triterpenoids from Acacia ataxacantha DC: antimicrobial and antioxidant activities. BMC Complement. Alternat. Med. 2016; 16(1):1-8.

Ahmadu AA, Agunu A, Lawal BA. Ferulic acid ester from the stem bark of Acacia ataxacantha. Afr. J. Biomed. Res. 2019 Oct 27; 22(2):214-7.

Amoussa AM, Bourjot M, Lagnika L, Vonthron-Sénécheau C, Sanni A. Acthaside: a new chromone derivative from Acacia ataxacantha and its biological activities. BMC Complement. Alternat. Med. 2016; 16(1):1-8.

Ahmadu AA, Delehouze C, Haruna A, Mustapha L, Lawal BA, Udobre A, Baratte B, Triscornia C, Autret A, Robert T, Bulinski JC. Betulin, a newly characterized compound in Acacia auriculiformis Bark, is a multi-target protein kinase inhibitor. Mol. 2021 29; 26(15):4599.

Ahmadu A, Abdulkarim A, Grougnet R, Myrianthopoulos V, Tillequin F, Magiatis P, Skaltsounis AL. Two new peltogynoids from Acacia nilotica Delile with kinase inhibitory activity. Planta Med. 2010; 76(05):458-60.

Ahmadu AA, Agunu A, Baratte B, Foll-Josselin B, Ruchaud S, Serive B, Bach S. Constituents of Acacia nilotica (L.) delile with novel kinase inhibitory activity. Planta Med. International Open. 2017; 4(03):e108-13.

Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie 1995:28, 25–30.

Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001: 73, 239–244.

Benzie IFF and Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power: The FRAP Assay”. Anal. Biochem, 1996: 239, 70-76.

Benzie IFF and Strain, JJ. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Oxidants and Antioxidants, 1999: Pt A, 299, 15-27.

Jimenez-Alvarez D, Giuffrida F, Golay PA, Cotting C, Lardeau A, Keely BJ. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil. J. Agric. Food Chem. 2008; 56(16):7151-9.

Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric

reducing antioxidant power” assay and cyclic voltammetry. BBA-General Subjects. 2005; 1721(1-3):174-84.

Sochor J, Ryvolova M, Krystofova O, Salas P, Hubalek J, Adam V et al. Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Mol.10; 15:8618-8640.

Nalini R, Anuradha R. Phytochemical Screening and "InVitro" Antioxidant Activity of Ethanolic Flower Extracts of Punica granatum. Int J Pharm Sci Rev Res. 2015; 30(1):353-360.

Shah R, Kathad H, Sheth R, Sheth N. In vitro antioxidant activity of roots of Tephosia purpurea Linn. Int. J Pharm. Sci. 2010; 3:30-33.

Negro C, Tommasi L, Miceli A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 2003; 87(1):41-4.

Baba H, Headman GB, Okpako E. Phytochemical screening, free radical scavenging and phenolic content evaluation of aqueous-ethanol extract of seeds of Citrus sinensis (L) Osbeck (Rutaceae). JOCPR. 2016; 8(9):244-8.

Herranz-López M, Fernández-Arroyo S, Pérez-Sanchez A, Barrajón-Catalán E, Beltrán-Debón R, Menéndez JA, Alonso-Villaverde C, Segura-

Carretero A, Joven J, Micol V. Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine. 2012 Feb 15;19(3-4):253-61.

Oyawaluja BO, Oyawaluja AA, Akinyimika DE, Odukoya OA, Coker HAB. Antioxidant Profiling, Phytochemical Investigation and Pharmacognostic Evaluation of Nephrolepis biserrata. Trop J Phytochem Pharm Sci, April 2024; 3(2):208-215

Downloads

Published

2024-10-03

How to Cite

Baba, H., Tarfa, F., Lawal, B. A., Akpanika, G. A., & Ahmadu, A. A. (2024). Antioxidant Properties of Ethanol Crude Extract, Partitioned and Chromatographic Fractions of <i>Acacia ataxacantha</i> DC (Fabaceae) stem bark. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 3(6), 345–349. https://doi.org/10.26538/tjpps/v3i6.4